Search results
Results from the WOW.Com Content Network
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
Examples include biological or social networks, which contain hundreds, thousands and even billions of nodes in some cases (e.g. Facebook or LinkedIn). 1-planarity [1] 3-dimensional matching [2] [3]: SP1 Bandwidth problem [3]: GT40 Bipartite dimension [3]: GT18 Capacitated minimum spanning tree [3]: ND5
Divide and conquer divides the problem into multiple subproblems and so the conquer stage is more complex than decrease and conquer algorithms. [citation needed] An example of a decrease and conquer algorithm is the binary search algorithm. Search and enumeration Many problems (such as playing chess) can be modelled as problems on graphs.
This is a list of algorithm general topics. Analysis of algorithms; Ant colony algorithm; Approximation algorithm; Best and worst cases; Big O notation; Combinatorial ...
What is the fastest algorithm for matrix multiplication? Can all-pairs shortest paths be computed in strongly sub-cubic time, that is, in time O(V 3−ϵ) for some ϵ>0? Can the Schwartz–Zippel lemma for polynomial identity testing be derandomized? Does linear programming admit a strongly polynomial-time algorithm?
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
For examples of this specification-method applied to the addition algorithm "m+n" see Algorithm examples. Sipser begins by defining '"algorithm" as follows: "Informally speaking, an algorithm is a collection of simple instructions for carrying out some task.
Since algorithms are platform-independent (i.e. a given algorithm can be implemented in an arbitrary programming language on an arbitrary computer running an arbitrary operating system), there are additional significant drawbacks to using an empirical approach to gauge the comparative performance of a given set of algorithms. Take as an example ...