enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  3. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.

  4. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Finding the geodesic between two points on the Earth, the so-called inverse geodetic problem, was the focus of many mathematicians and geodesists over the course of the 18th and 19th centuries with major contributions by Clairaut, [5] Legendre, [6] Bessel, [7] and Helmert English translation of Astron. Nachr. 4, 241–254 (1825).

  5. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  6. Great-circle navigation - Wikipedia

    en.wikipedia.org/wiki/Great-circle_navigation

    To find the way-points, that is the positions of selected points on the great circle between P 1 and P 2, we first extrapolate the great circle back to its node A, the point at which the great circle crosses the equator in the northward direction: let the longitude of this point be λ 0 — see Fig 1.

  7. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [12] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [12]

  8. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry.It is the length of the line segment which joins the point to the line and is perpendicular to the line.

  9. Slant range - Wikipedia

    en.wikipedia.org/wiki/Slant_range

    If the two points are at the same level (relative to a specific datum), the slant distance equals the horizontal distance. An example of slant range is the distance to an aircraft flying at high altitude with respect to that of the radar antenna. The slant range (1) is the hypotenuse of the triangle represented by the altitude of the aircraft ...