enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...

  3. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    This makes only the Gram–Schmidt process applicable for iterative methods like the Arnoldi iteration. Yet another alternative is motivated by the use of Cholesky decomposition for inverting the matrix of the normal equations in linear least squares. Let be a full column rank matrix, whose columns need to be orthogonalized.

  4. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices. QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.

  5. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    The Gram matrix of a sequence of points ,, …, in k-dimensional space ℝ k is the n×n matrix = of their dot products (here a point is thought of as a vector from 0 to that point): g i j = x i ⋅ x j = ‖ x i ‖ ‖ x j ‖ cos ⁡ θ {\displaystyle g_{ij}=x_{i}\cdot x_{j}=\|x_{i}\|\|x_{j}\|\cos \theta } , where θ {\displaystyle \theta ...

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The matrix X is subjected to an orthogonal decomposition, e.g., the QR decomposition as follows. = , where Q is an m×m orthogonal matrix (Q T Q=I) and R is an n×n upper triangular matrix with >. The residual vector is left-multiplied by Q T.

  8. Iwasawa decomposition - Wikipedia

    en.wikipedia.org/wiki/Iwasawa_decomposition

    In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization).

  9. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Similarly, the singular values of any ⁠ ⁠ matrix can be viewed as the magnitude of the semiaxis of an ⁠ ⁠-dimensional ellipsoid in ⁠ ⁠-dimensional space, for example as an ellipse in a (tilted) 2D plane in a 3D space. Singular values encode magnitude of the semiaxis, while singular vectors encode direction.