enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).

  3. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A vector pointing from point A to point B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction.

  4. Coordinate vector - Wikipedia

    en.wikipedia.org/wiki/Coordinate_vector

    In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. [1] An easy example may be a position such as (5, 2, 1) in a 3-dimensional Cartesian coordinate system with the basis as the axes of this system. Coordinates are always ...

  5. Real coordinate space - Wikipedia

    en.wikipedia.org/wiki/Real_coordinate_space

    Cartesian coordinates identify points of the Euclidean plane with pairs of real numbers. In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted R n or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors.

  6. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    For any smooth function f on a Riemannian manifold (M, g), the gradient of f is the vector field ∇f such that for any vector field X, (,) =, that is, ((),) = (), where g x ( , ) denotes the inner product of tangent vectors at x defined by the metric g and ∂ X f is the function that takes any point x ∈ M to the directional derivative of f ...

  7. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    Cartesian coordinates are the foundation of analytic geometry, and provide enlightening geometric interpretations for many other branches of mathematics, such as linear algebra, complex analysis, differential geometry, multivariate calculus, group theory and more.

  8. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    The dot product may be defined algebraically or geometrically. The geometric definition is based on the notions of angle and distance (magnitude) of vectors. The equivalence of these two definitions relies on having a Cartesian coordinate system for Euclidean space.

  9. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    Since this definition is coordinate-free, it shows that the divergence is the same in any coordinate system. However the above definition is not often used practically to calculate divergence; when the vector field is given in a coordinate system the coordinate definitions below are much simpler to use.