Search results
Results from the WOW.Com Content Network
A measurable subset of a standard probability space is a standard probability space. It is assumed that the set is not a null set, and is endowed with the conditional measure. See (Rokhlin 1952, Sect. 2.3 (p. 14)) and (Haezendonck 1973, Proposition 5). Every probability measure on a standard Borel space turns it into a standard probability space.
In probability theory, a probability space or a probability triple (,,) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2]
In holography, the space–bandwidth product determines the resolution and quality of the reconstructed holographic image. The SBP sets a limit on the amount of information that can be recorded and reconstructed. In digital holography, the SBP of a holographic imaging system can be calculated by analyzing at the recorded interference pattern. [3]
In probability theory particularly in the Malliavin calculus, a Gaussian probability space is a probability space together with a Hilbert space of mean zero, real-valued Gaussian random variables. Important examples include the classical or abstract Wiener space with some suitable collection of Gaussian random variables.
Download as PDF; Printable version; ... or small-bias probability space) is a probability distribution that fools parity ... "The bit extraction problem or t ...
In the theory of stochastic processes, a subdiscipline of probability theory, filtrations are totally ordered collections of subsets that are used to model the information that is available at a given point and therefore play an important role in the formalization of random (stochastic) processes.
A probability metric D between two random variables X and Y may be defined, for example, as (,) = | | (,) where F(x, y) denotes the joint probability density function of the random variables X and Y.
In physics and mathematics, a random field is a random function over an arbitrary domain (usually a multi-dimensional space such as ). That is, it is a function f ( x ) {\displaystyle f(x)} that takes on a random value at each point x ∈ R n {\displaystyle x\in \mathbb {R} ^{n}} (or some other domain).