Search results
Results from the WOW.Com Content Network
PyTorch supports various sub-types of Tensors. [29] Note that the term "tensor" here does not carry the same meaning as tensor in mathematics or physics. The meaning of the word in machine learning is only superficially related to its original meaning as a certain kind of object in linear algebra. Tensors in PyTorch are simply multi-dimensional ...
This object is used by most other packages and thus forms the core object of the library. The Tensor also supports mathematical operations like max, min, sum, statistical distributions like uniform, normal and multinomial, and BLAS operations like dot product, matrix–vector multiplication, matrix–matrix multiplication and matrix product.
In May 2016, Google announced its Tensor processing unit (TPU), an application-specific integrated circuit (ASIC, a hardware chip) built specifically for machine learning and tailored for TensorFlow. A TPU is a programmable AI accelerator designed to provide high throughput of low-precision arithmetic (e.g., 8-bit ), and oriented toward using ...
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
TensorFlow and PyTorch, by far the most popular machine learning libraries, [20] as of 2023 largely only include Adam-derived optimizers, as well as predecessors to Adam such as RMSprop and classic SGD. PyTorch also partially supports Limited-memory BFGS, a line-search method, but only for single-device setups without parameter groups. [19] [21]
PyTorch: Tensors and Dynamic neural networks in Python with GPU acceleration. TensorFlow: Apache 2.0-licensed Theano-like library with support for CPU, GPU and Google's proprietary TPU, [116] mobile; Theano: A deep-learning library for Python with an API largely compatible with the NumPy library.
The Softmax function is a smooth approximation to the arg max function: the function whose value is the index of a vector's largest element. The name "softmax" may be misleading.
As of 2018, SqueezeNet ships "natively" as part of the source code of a number of deep learning frameworks such as PyTorch, Apache MXNet, and Apple CoreML. [ 10 ] [ 11 ] [ 12 ] In addition, third party developers have created implementations of SqueezeNet that are compatible with frameworks such as TensorFlow . [ 13 ]