enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  3. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch supports various sub-types of Tensors. [29] Note that the term "tensor" here does not carry the same meaning as tensor in mathematics or physics. The meaning of the word in machine learning is only superficially related to its original meaning as a certain kind of object in linear algebra. Tensors in PyTorch are simply multi-dimensional ...

  4. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    This object is used by most other packages and thus forms the core object of the library. The Tensor also supports mathematical operations like max, min, sum, statistical distributions like uniform, normal and multinomial, and BLAS operations like dot product, matrix–vector multiplication, matrix–matrix multiplication and matrix product.

  5. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    The name TensorFlow derives from the operations that such neural networks perform on multidimensional data arrays, which are referred to as tensors. [19] During the Google I/O Conference in June 2016, Jeff Dean stated that 1,500 repositories on GitHub mentioned TensorFlow, of which only 5 were from Google.

  6. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    The bfloat16 (brain floating point) [1] [2] floating-point format is a computer number format occupying 16 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point.

  7. DeepSpeed - Wikipedia

    en.wikipedia.org/wiki/DeepSpeed

    The library is designed to reduce computing power and memory use and to train large distributed models with better parallelism on existing computer hardware. [2] [3] DeepSpeed is optimized for low latency, high throughput training.

  8. Tensor Processing Unit - Wikipedia

    en.wikipedia.org/wiki/Tensor_Processing_Unit

    Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...

  9. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    As an example, a single 5×5 convolution can be factored into 3×3 stacked on top of another 3×3. Both has a receptive field of size 5×5. The 5×5 convolution kernel has 25 parameters, compared to just 18 in the factorized version. Thus, the 5×5 convolution is strictly more powerful than the factorized version.