enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isohedral figure - Wikipedia

    en.wikipedia.org/wiki/Isohedral_figure

    Similarly, a k-isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k, or only for some m < k). [ 6 ] ("1-isohedral" is the same as "isohedral".) A monohedral polyhedron or monohedral tiling ( m = 1) has congruent faces, either directly or reflectively, which occur in one or more symmetry positions.

  3. List of isotoxal polyhedra and tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_isotoxal_polyhedra...

    The dual of a non-convex polyhedron is also a non-convex polyhedron. [2] ( By contraposition.) There are ten non-convex isotoxal polyhedra based on the quasiregular octahedron, cuboctahedron, and icosidodecahedron: the five (quasiregular) hemipolyhedra based on the quasiregular octahedron, cuboctahedron, and icosidodecahedron, and their five (infinite) duals:

  4. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    An example is the sphinx tiling, an aperiodic tiling formed by a pentagonal rep-tile. [20] The sphinx may also tile the plane periodically, by fitting two sphinx tiles together to form a parallelogram and then tiling the plane by translation of this parallelogram, [ 20 ] a pattern that can be extended to any non-convex pentagon that has two ...

  5. Anisohedral tiling - Wikipedia

    en.wikipedia.org/wiki/Anisohedral_tiling

    The problem of anisohedral tiling has been generalised by saying that the isohedral number of a tile is the lowest number orbits (equivalence classes) of tiles in any tiling of that tile under the action of the symmetry group of that tiling, and that a tile with isohedral number k is k-anisohedral.

  6. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern.

  7. Isogonal figure - Wikipedia

    en.wikipedia.org/wiki/Isogonal_figure

    In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

  8. Cairo pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Cairo_pentagonal_tiling

    The snub square tiling is an Archimedean tiling, and as the dual to an Archimedean tiling this form of the Cairo pentagonal tiling is a Catalan tiling or Laves tiling. [14] It is one of two monohedral pentagonal tilings that, when the tiles have unit area, minimizes the perimeter of the tiles.

  9. List of k-uniform tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_k-uniform_tilings

    Such periodic tilings of convex polygons may be classified by the number of orbits of vertices, edges and tiles. If there are k orbits of vertices, a tiling is known as k-uniform or k-isogonal; if there are t orbits of tiles, as t-isohedral; if there are e orbits of edges, as e-isotoxal.

  1. Related searches isohedral tiling and flooring patterns youtube video tutorial excel spreadsheet

    isohedral shapesisohedral polytope
    isohedral geometrypentagonal tiling diagram
    isohedral dimension