enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be significantly slower (in the worst case, as a function of the number of vertices) than finding a ...

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A graph that contains a Hamiltonian path is called a traceable graph. A graph is Hamiltonian-connected if for every pair of vertices there is a Hamiltonian path between the two vertices. A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once.

  4. Icosian calculus - Wikipedia

    en.wikipedia.org/wiki/Icosian_Calculus

    The word with the roles of and interchanged has the same properties, but these give the same Hamiltonian cycles, up to shift in initial edge and reversal of direction. [3] Hence Hamilton's word accounts for all Hamiltonian cycles in the dodecahedron, whose number is known to be 30.

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.

  6. Bottleneck traveling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Bottleneck_traveling...

    For, any unweighted graph can be transformed into a metric space by setting its edge weights to 1 and setting the distance between all nonadjacent pairs of vertices to 2. An approximation with ratio better than 2 in this metric space could be used to determine whether the original graph contains a Hamiltonian cycle, an NP-complete problem. [6]

  7. Barnette's conjecture - Wikipedia

    en.wikipedia.org/wiki/Barnette's_conjecture

    A graph is bipartite if its vertices can be colored with two different colors such that each edge has one endpoint of each color. A graph is cubic (or 3-regular) if each vertex is the endpoint of exactly three edges. Finally, a graph is Hamiltonian if there exists a cycle that passes through each of its vertices exactly once. Barnette's ...

  8. Hamiltonian completion - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_completion

    The Hamiltonian completion problem is to find the minimal number of edges to add to a graph to make it Hamiltonian. The problem is clearly NP-hard in the general case (since its solution gives an answer to the NP-complete problem of determining whether a given graph has a Hamiltonian cycle ).

  9. Ore's theorem - Wikipedia

    en.wikipedia.org/wiki/Ore's_theorem

    Ore's theorem is a generalization of Dirac's theorem that, when each vertex has degree at least n/2, the graph is Hamiltonian. For, if a graph meets Dirac's condition, then clearly each pair of vertices has degrees adding to at least n. In turn Ore's theorem is generalized by the Bondy–Chvátal theorem.