Search results
Results from the WOW.Com Content Network
Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed. For example, a car moving at a constant 20 kilometres per hour in a circular path has a constant speed, but does not have a constant velocity because its direction changes.
Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time.
The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position , which varies with (time). An example of linear motion is an ...
In mechanics, a constant of motion is a physical quantity conserved throughout the motion, imposing in effect a constraint on the motion. However, it is a mathematical constraint , the natural consequence of the equations of motion , rather than a physical constraint (which would require extra constraint forces ).
Hamilton's equations give the time evolution of coordinates and conjugate momenta in four first-order differential equations, ˙ = ˙ = ˙ = ˙ = Momentum , which corresponds to the vertical component of angular momentum = ˙ , is a constant of motion. That is a consequence of the rotational symmetry of the ...
The Euler–Lagrange equation for R is simply ¨ =, which states the center of mass moves in a straight line at constant velocity. Since the relative motion only depends on the magnitude of the separation, it is ideal to use polar coordinates (r, θ) and take r = | r |, = (˙ + ˙) (), so θ is a cyclic coordinate with the corresponding ...