Search results
Results from the WOW.Com Content Network
Exponential utility implies constant absolute risk aversion (CARA), with coefficient of absolute risk aversion equal to a constant: ″ ′ =. In the standard model of one risky asset and one risk-free asset, [1] [2] for example, this feature implies that the optimal holding of the risky asset is independent of the level of initial wealth; thus on the margin any additional wealth would be ...
In economics, Epstein–Zin preferences refers to a specification of recursive utility. A recursive utility function can be constructed from two components,: a time aggregator that characterizes preferences in the absence of uncertainty and a risk aggregator that defines the certainty equivalent function that characterizes preferences over static gambles and is used to aggregate the risk ...
In economics, exponential discounting is a specific form of the discount function, used in the analysis of choice over time (with or without uncertainty). Formally, exponential discounting occurs when total utility is given by
Isoelastic utility for different values of . When > the curve approaches the horizontal axis asymptotically from below with no lower bound.. In economics, the isoelastic function for utility, also known as the isoelastic utility function, or power utility function, is used to express utility in terms of consumption or some other economic variable that a decision-maker is concerned with.
E.g., the commodity is a heterogeneous resource, such as land. Then, the utility functions are not functions of a finite number of variables, but rather set functions defined on Borel subsets of the land. The natural generalization of a linear utility function to that model is an additive set function.
Standard utility functions represent ordinal preferences. The expected utility hypothesis imposes limitations on the utility function and makes utility cardinal (though still not comparable across individuals). Although the expected utility hypothesis is standard in economic modeling, it is violated in psychological experiments.
Discounted utility calculations made for events at various points in the future as well as at the present take the form = (), where u(x t) is the utility of some choice x at time t and T is the time of the most distant future
A consumer's indirect utility (,) can be computed from their utility function (), defined over vectors of quantities of consumable goods, by first computing the most preferred affordable bundle, represented by the vector (,) by solving the utility maximization problem, and second, computing the utility ((,)) the consumer derives from that ...