enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation. The numerical value for logarithm to the base 10 can be calculated with the following identities: [5]

  3. Logarithmic scale - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_scale

    Unlike a linear scale where each unit of distance corresponds to the same increment, on a logarithmic scale each unit of length is a multiple of some base value raised to a power, and corresponds to the multiplication of the previous value in the scale by the base value. In common use, logarithmic scales are in base 10 (unless otherwise specified).

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The logarithm keys (LOG for base 10 and LN for base e) on a TI-83 Plus graphing calculator. Logarithms are easy to compute in some cases, such as log 10 (1000) = 3. In general, logarithms can be calculated using power series or the arithmetic–geometric mean, or be retrieved from a precalculated logarithm table that provides a fixed precision.

  6. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For any number a in this list, one can compute log 10 a. For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 ...

  7. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used. The choice of base corresponds to the choice of logarithmic unit for the value: base 2 corresponds to a shannon, base e to a nat, and base 10 to a hartley ...

  8. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x , log e x , or sometimes, if the base e is implicit, simply log x .

  9. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2]