Search results
Results from the WOW.Com Content Network
In physics, the fine-structure constant, also known as the Sommerfeld constant, commonly denoted by α (the Greek letter alpha), is a fundamental physical constant that quantifies the strength of the electromagnetic interaction between elementary charged particles.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field.These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates.
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.
Some observed electromagnetic phenomena cannot be explained with Maxwell's equations if the source of the electromagnetic fields are the classical distributions of charge and current. These include photon–photon scattering and many other phenomena related to photons or virtual photons , " nonclassical light " and quantum entanglement of ...
If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.
Using the Maxwell equations, one can see that the electromagnetic stress–energy tensor (defined above) satisfies the following differential equation, relating it to the electromagnetic tensor and the current four-vector , + = or , + =, which expresses the conservation of linear momentum and energy by electromagnetic interactions.