Ad
related to: principal components analysis- Pricing Options
Check Our Weekly Membership
Plan And More. View Pricing.
- Upload Data
SPSSAU Currently Supports Excel,
SPSS, Stata And SAS File Formats.
- Quick Start
Analyzing Data With
SPSSAU Is Straightforward.
- Statistical Software
Online data analysis
500 intelligent algorithm and tests
- Pricing Options
Search results
Results from the WOW.Com Content Network
Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.
The empirical version (i.e., with the coefficients computed from a sample) is known as the Karhunen–Loève transform (KLT), principal component analysis, proper orthogonal decomposition (POD), empirical orthogonal functions (a term used in meteorology and geophysics), or the Hotelling transform.
In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression . [ 1 ] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model .
In linear algebra and functional analysis, the principal axis theorem is a geometrical counterpart of the spectral theorem. It has applications to the statistics of principal components analysis and the singular value decomposition. In physics, the theorem is fundamental to the studies of angular momentum and birefringence.
Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data.Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space L 2 that consists of the eigenfunctions of the autocovariance operator.
In the field of multivariate statistics, kernel principal component analysis (kernel PCA) [1] is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are performed in a reproducing kernel Hilbert space .
Sparse principal component analysis (SPCA or sparse PCA) is a technique used in statistical analysis and, in particular, in the analysis of multivariate data sets. It extends the classic method of principal component analysis (PCA) for the reduction of dimensionality of data by introducing sparsity structures to the input variables.
Initially described as a three-mode extension of factor analysis and principal component analysis it may actually be generalized to higher mode analysis, which is also called higher-order singular value decomposition (HOSVD). It may be regarded as a more flexible PARAFAC (parallel factor analysis) model. In PARAFAC the core tensor is restricted ...
Ad
related to: principal components analysis