enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]

  3. Equilibrium thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_thermodynamics

    The word equilibrium implies a state of balance. Equilibrium thermodynamics, in origins, derives from analysis of the Carnot cycle. Here, typically a system, as cylinder of gas, initially in its own state of internal thermodynamic equilibrium, is set out of balance via heat input from a combustion reaction. Then, through a series of steps, as ...

  4. Quasistatic process - Wikipedia

    en.wikipedia.org/wiki/Quasistatic_process

    An example of this is quasi-static expansion of a mixture of hydrogen and oxygen gas, where the volume of the system changes so slowly that the pressure remains uniform throughout the system at each instant of time during the process. [2] Such an idealized process is a succession of physical equilibrium states, characterized by infinite ...

  5. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...

  6. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    A quasi-static thermodynamic process can be visualized by graphically plotting the path of idealized changes to the system's state variables. In the example, a cycle consisting of four quasi-static processes is shown. Each process has a well-defined start and end point in the pressure-volume state space.

  7. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    In order that a system may be in its own internal state of thermodynamic equilibrium, it is of course necessary, but not sufficient, that it be in its own internal state of thermal equilibrium; it is possible for a system to reach internal mechanical equilibrium before it reaches internal thermal equilibrium. [57]

  8. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  9. Isochoric process - Wikipedia

    en.wikipedia.org/wiki/Isochoric_process

    Replacing work with a change in volume gives = Since the process is isochoric, dV = 0 , the previous equation now gives d U = d Q {\displaystyle dU=dQ} Using the definition of specific heat capacity at constant volume, c v = ( dQ / dT )/ m , where m is the mass of the gas, we get d Q = m c v d T {\displaystyle dQ=mc_{\mathrm {v} }\,dT}