Search results
Results from the WOW.Com Content Network
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
Logarithmic spiral (pitch 10°) A section of the Mandelbrot set following a logarithmic spiralA logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature.
The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
General Problem Solver (GPS) is a computer program created in 1957 by Herbert A. Simon, J. C. Shaw, and Allen Newell (RAND Corporation) intended to work as a universal problem solver machine. In contrast to the former Logic Theorist project, the GPS works with means–ends analysis .
The General Problem Solver (GPS) is a particular computer program created in 1957 by Herbert Simon, J. C. Shaw, and Allen Newell intended to work as a universal problem solver, that theoretically can be used to solve every possible problem that can be formalized in a symbolic system, given the right input configuration.
In mathematics, for given real numbers a and b, the logarithm log b a is a number x such that b x = a.Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a.
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.