Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
g(x) is a constant, a polynomial function, exponential function , sine or cosine functions or , or finite sums and products of these functions (, constants). The method consists of finding the general homogeneous solution y c {\displaystyle y_{c}} for the complementary linear homogeneous differential equation
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.
Cauchy's functional equation is the functional equation: (+) = + (). A function that solves this equation is called an additive function.Over the rational numbers, it can be shown using elementary algebra that there is a single family of solutions, namely : for any rational constant .
[2] [3] In functional analysis, the term linear functional is a synonym of linear form; [3] [4] [5] that is, it is a scalar-valued linear map. Depending on the author, such mappings may or may not be assumed to be linear, or to be defined on the whole space X . {\displaystyle X.} [ citation needed ]
If the problem is to solve a Dirichlet boundary value problem, the Green's function should be chosen such that G(x,x′) vanishes when either x or x′ is on the bounding surface. Thus only one of the two terms in the surface integral remains. If the problem is to solve a Neumann boundary value problem, it might seem logical to choose Green's ...
However, a more restricted meaning is often used, where a functional equation is an equation that relates several values of the same function. For example, the logarithm functions are essentially characterized by the logarithmic functional equation log ( x y ) = log ( x ) + log ( y ) . {\displaystyle \log(xy)=\log(x)+\log(y).}