Search results
Results from the WOW.Com Content Network
The upper plot uses raw data. In the lower plot, both the area and population data have been transformed using the logarithm function. In statistics , data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point z i is replaced with the transformed value y i = f ( z i ...
A set of data that arises from the log-normal distribution has a symmetric Lorenz curve (see also Lorenz asymmetry coefficient). [ 32 ] The harmonic H {\displaystyle H} , geometric G {\displaystyle G} and arithmetic A {\displaystyle A} means of this distribution are related; [ 33 ] such relation is given by
In statistics and applications of statistics, normalization can have a range of meanings. [1] In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging.
Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).
Database normalization is the process of structuring a relational database accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model .
Raw data is a relative term (see data), because even once raw data have been "cleaned" and processed by one team of researchers, another team may consider these processed data to be "raw data" for another stage of research. Raw data can be inputted to a computer program or used in manual procedures such as analyzing statistics from a survey.
The plot visualizes the differences between measurements taken in two samples, by transforming the data onto M (log ratio) and A (mean average) scales, then plotting these values. Though originally applied in the context of two channel DNA microarray gene expression data, MA plots are also used to visualise high-throughput sequencing analysis ...
Log-linear analysis starts with the saturated model and the highest order interactions are removed until the model no longer accurately fits the data. Specifically, at each stage, after the removal of the highest ordered interaction, the likelihood ratio chi-square statistic is computed to measure how well the model is fitting the data.