Search results
Results from the WOW.Com Content Network
One example where a deque can be used is the work stealing algorithm. [9] This algorithm implements task scheduling for several processors. A separate deque with threads to be executed is maintained for each processor. To execute the next thread, the processor gets the first element from the deque (using the "remove first element" deque operation).
In computer science, peek is an operation on certain abstract data types, specifically sequential collections such as stacks and queues, which returns the value of the top ("front") of the collection without removing the element from the collection. It thus returns the same value as operations such as "pop" or "dequeue", but does not modify the ...
The operation of adding an element to the rear of the queue is known as enqueue, and the operation of removing an element from the front is known as dequeue. Other operations may also be allowed, often including a peek or front operation that returns the value of the next element to be dequeued without dequeuing it.
It implements a max-priority-queue, and has three parameters: a comparison object for sorting such as a function object (defaults to less<T> if unspecified), the underlying container for storing the data structures (defaults to std::vector<T>), and two iterators to the beginning and end of a sequence.
Representation of a FIFO queue with enqueue and dequeue operations. Depending on the application, a FIFO could be implemented as a hardware shift register, or using different memory structures, typically a circular buffer or a kind of list. For information on the abstract data structure, see Queue (data structure).
Additionally, a peek operation can, without modifying the stack, return the value of the last element added. The name stack is an analogy to a set of physical items stacked one atop another, such as a stack of plates. The order in which an element added to or removed from a stack is described as last in, first out, referred to by the acronym LIFO.
The bridge pattern is often confused with the adapter pattern, and is often implemented using the object adapter pattern; e.g., in the Java code below. Variant: The implementation can be decoupled even more by deferring the presence of the implementation to the point where the abstraction is utilized.
Multiple inheritance is a feature of some object-oriented computer programming languages in which an object or class can inherit features from more than one parent object or parent class. It is distinct from single inheritance, where an object or class may only inherit from one particular object or class.