Search results
Results from the WOW.Com Content Network
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.
In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .
Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.
Herein also his remarkable theorem in pure mathematics, since universally known as Green's theorem, and probably the most important instrument of investigation in the whole range of mathematical physics, made its appearance. We are all now able to understand, in a general way at least, the importance of Green's work, and the progress made since ...
In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...
A special case of this is =, in which case the theorem is the basis for Green's identities. With F → F × G {\displaystyle \mathbf {F} \rightarrow \mathbf {F} \times \mathbf {G} } for two vector fields F and G , where × {\displaystyle \times } denotes a cross product,
The title page to Green's original essay on what is now known as Green's theorem. In 1828, Green published An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, which is the essay he is most famous for today. It was published privately at the author's expense, because he thought it would be ...
One easy way to establish this theorem (in the case where =, =, and =, which readily entails the result in general) is by applying Green's theorem to the gradient of . An elementary proof for functions on open subsets of the plane is as follows (by a simple reduction, the general case for the theorem of Schwarz easily reduces to the planar case ...