Search results
Results from the WOW.Com Content Network
Like any physical quantity that is a function of velocity, the kinetic energy of an object depends on the relationship between the object and the observer's frame of reference. Thus, the kinetic energy of an object is not invariant. Spacecraft use chemical energy to launch and gain considerable kinetic energy to reach orbital velocity. In an ...
The value (,) of the Hamiltonian is the total energy of the system, in this case the sum of kinetic and potential energy, traditionally denoted T and V, respectively. Here p is the momentum mv and q is the space coordinate.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
kinetic energy The energy that a physical body possesses due to its motion, defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. The body continues to maintain this kinetic energy unless its velocity changes. Contrast potential energy. Kirchhoff's circuit laws
Kinetic energy T is the energy of the system's motion and is a function only of the velocities v k, not the positions r k, nor time t, so T = T(v 1, v 2, ...). V , the potential energy of the system, reflects the energy of interaction between the particles, i.e. how much energy any one particle has due to all the others, together with any ...
which illustrates the kinetic energy is in general a function of the generalized velocities, coordinates, and time if the constraints also vary with time, so T = T(q, dq/dt, t). In the case the constraints on the particles are time-independent, then all partial derivatives with respect to time are zero, and the kinetic energy is a homogeneous ...
If the kinetic energy is a homogeneous function of degree 2 of the generalized velocities, and the Lagrangian is explicitly time-independent, then: ((˙), (˙ ˙),) = ((˙), ˙ ˙,), (, ˙), where λ is a constant, then the Hamiltonian will be the total conserved energy, equal to the total kinetic and potential energies of the system: = + =.
Multiplying by the operator [S], the formula for the velocity v P takes the form: = [] + ˙ = / +, where the vector ω is the angular velocity vector obtained from the components of the matrix [Ω]; the vector / =, is the position of P relative to the origin O of the moving frame M; and = ˙, is the velocity of the origin O.