Search results
Results from the WOW.Com Content Network
To describe a soft ferromagnetic material for technical use, the following parameters are specified: (Relative) permeability Ratio of induction B in the material caused by some field H to an induction in a vacuum in the same field; it is a dimensionless value, as it is relative to a vacuum permeability;
For example, 4% electrical steel has an initial relative permeability (at or near 0 T) of 2,000 and a maximum of 38,000 at T = 1 [5] [6] and different range of values at different percent of Si and manufacturing process, and, indeed, the relative permeability of any material at a sufficiently high field strength trends toward 1 (at magnetic ...
Iron is desirable to make magnetic cores, as it can withstand high levels of magnetic field without saturating (up to 2.16 teslas at ambient temperature. [ 2 ] [ 3 ] ) Annealed iron is used because, unlike "hard" iron, it has low coercivity and so does not remain magnetised when the field is removed, which is often important in applications ...
Mu-metal has several compositions. One such composition is approximately 77% nickel, 16% iron, 5% copper, and 2% chromium or molybdenum. [1] [2] More recently, mu-metal is considered to be ASTM A753 Alloy 4 and is composed of approximately 80% nickel, 5% molybdenum, small amounts of various other elements such as silicon, and 12~15% iron for ...
Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial ...
The permeability of ferromagnetic materials is not constant, but depends on H. In saturable materials the relative permeability increases with H to a maximum, then as it approaches saturation inverts and decreases toward one. [2] [3] Different materials have different saturation levels.
Much stronger magnetic fields can be produced if a magnetic core, made of a soft ferromagnetic (or ferrimagnetic) material such as iron, is placed inside the coil. [1] [2] [15] [16] A core can increase the magnetic field to thousands of times the strength of the field of the coil alone, due to the high magnetic permeability of the material.
[1] [2] Its saturation flux density of around 2.4 tesla is the highest of any commercially available metal. Coupled with its low coercivity and core losses , its high saturation and permeability makes Permendur useful as magnetic cores in transformers , electric generators and other electrical equipment.