Search results
Results from the WOW.Com Content Network
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
A truth table is a semantic proof method used to determine the truth value of a propositional logic expression in every possible scenario. [93] By exhaustively listing the truth values of its constituent atoms, a truth table can show whether a proposition is true, false, tautological, or contradictory. [94] See § Semantic proof via truth tables.
In logic, a truth function [1] is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value.
Symmetric: the value does not depend on the order of its arguments. Read-once: Can be expressed with conjunction, disjunction, and negation with a single instance of each variable. Balanced: if its truth table contains an equal number of zeros and ones. The Hamming weight of the function is the number of ones in the truth table.
In words, [p, q, r] is equivalent to: "if q, then p, else r", or "p or r, according as q or not q". This may also be stated as "q implies p, and not q implies r". So, for any values of p, q, and r, the value of [p, q, r] is the value of p when q is true, and is the value of r otherwise. The conditioned disjunction is also equivalent to
Logical equality is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both operands are false or both operands are true. The truth table of p EQ q (also written as p = q, p ↔ q, Epq, p ≡ q, or p == q) is as follows: The Venn diagram of A EQ B (red part is true)
The truth value of this formula changes depending on the values that x and y denote. First, the variable assignment μ can be extended to all terms of the language, with the result that each term maps to a single element of the domain of discourse. The following rules are used to make this assignment: Variables. Each variable x evaluates to μ(x)
Truth constants are nullary connectives representing particular truth values between 0 and 1 in the standard real-valued semantics. For the real number r {\displaystyle r} , the corresponding truth constant is usually denoted by r ¯ . {\displaystyle {\overline {r}}.}