enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General regression neural network - Wikipedia

    en.wikipedia.org/wiki/General_regression_neural...

    GRNN has been implemented in many computer languages including MATLAB, [3] R- programming language, Python (programming language) and Node.js.. Neural networks (specifically Multi-layer Perceptron) can delineate non-linear patterns in data by combining with generalized linear models by considering distribution of outcomes (sightly different from original GRNN).

  3. Time delay neural network - Wikipedia

    en.wikipedia.org/wiki/Time_delay_neural_network

    Matlab: The neural network toolbox has explicit functionality designed to produce a time delay neural network give the step size of time delays and an optional training function. The default training algorithm is a Supervised Learning back-propagation algorithm that updates filter weights based on the Levenberg-Marquardt optimizations.

  4. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  5. Radial basis function network - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_network

    In the field of mathematical modeling, a radial basis function network is an artificial neural network that uses radial basis functions as activation functions. The output of the network is a linear combination of radial basis functions of the inputs and neuron parameters. Radial basis function networks have many uses, including function ...

  6. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear .

  7. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).

  8. Echo state network - Wikipedia

    en.wikipedia.org/wiki/Echo_state_network

    An echo state network (ESN) [1] [2] is a type of reservoir computer that uses a recurrent neural network with a sparsely connected hidden layer (with typically 1% connectivity). The connectivity and weights of hidden neurons are fixed and randomly assigned.

  9. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    The examples are usually administered several times as iterations. The training utilizes competitive learning. When a training example is fed to the network, its Euclidean distance to all weight vectors is computed. The neuron whose weight vector is most similar to the input is called the best matching unit (BMU). The weights of the BMU and ...