Search results
Results from the WOW.Com Content Network
The affinity laws (also known as the "Fan Laws" or "Pump Laws") for pumps/fans are used in hydraulics, hydronics and/or HVAC to express the relationship between variables involved in pump or fan performance (such as head, volumetric flow rate, shaft speed) and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements ...
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
The relationship between gallons per minute (gpm) and fixture unit is not constant, but varies with the number of fixture units. For example, 1000 FU is equivalent to 220 US gallons per minute (0.014 m 3 /s) while 2000 FU represents only 330 US gallons per minute (0.021 m 3 /s), about 1.5 times the flow rate.
S = Hydraulic slope; h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 ...
Only the upstream depth needs to be measured to calculate the flow rate. A free flow also induces a hydraulic jump downstream of the flume. Submerged flow occurs when the water surface downstream of the flume is high enough to restrict flow through a flume, submerged flume conditions exist. A backwater buildup effect occurs in a submerged flume.
In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as =, where Q is the rate of flow (expressed in US gallons per minute), SG is the specific gravity of the fluid (for water ...