enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    The problem of deciding the satisfiability of a given conjunction of Horn clauses is called Horn-satisfiability, or HORN-SAT. It can be solved in polynomial time by a single step of the unit propagation algorithm, which produces the single minimal model of the set of Horn clauses (w.r.t. the set of literals assigned to TRUE).

  3. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Boolean satisfiability problem (SAT). [2] [3]: LO1 There are many variations that are also NP-complete. An important variant is where each clause has exactly three literals (3SAT), since it is used in the proof of many other NP-completeness results. [3]: p. 48 Circuit satisfiability problem; Conjunctive Boolean query [3]: SR31

  4. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    There is often only a small difference between a problem in P and an NP-complete problem. For example, the 3-satisfiability problem, a restriction of the Boolean satisfiability problem, remains NP-complete, whereas the slightly more restricted 2-satisfiability problem is in P (specifically, it is NL-complete), but the slightly more general max ...

  5. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    The first natural problem proven to be NP-complete was the Boolean satisfiability problem, also known as SAT. As noted above, this is the Cook–Levin theorem; its proof that satisfiability is NP-complete contains technical details about Turing machines as they relate to the definition of NP.

  6. Cook–Levin theorem - Wikipedia

    en.wikipedia.org/wiki/Cook–Levin_theorem

    A decision problem is in NP if it can be decided by a non-deterministic Turing machine in polynomial time.. An instance of the Boolean satisfiability problem is a Boolean expression that combines Boolean variables using Boolean operators.

  7. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.

  8. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...

  9. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The complexity class NP, on the other hand, contains many problems that people would like to solve efficiently, but for which no efficient algorithm is known, such as the Boolean satisfiability problem, the Hamiltonian path problem and the vertex cover problem. Since deterministic Turing machines are special non-deterministic Turing machines ...