enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Although implicit in the development of calculus of the 17th and 18th centuries, the modern idea of the limit of a function goes back to Bolzano who, in 1817, introduced the basics of the epsilon-delta technique (see (ε, δ)-definition of limit below) to define continuous functions. However, his work was not known during his lifetime.

  3. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    In these limits, the infinitesimal change is often denoted or .If () is differentiable at , (+) = ′ ().This is the definition of the derivative.All differentiation rules can also be reframed as rules involving limits.

  4. Nonstandard calculus - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_calculus

    As another illustration of the power of Robinson's approach, a short proof of the intermediate value theorem (Bolzano's theorem) using infinitesimals is done by the following. Let f be a continuous function on [a,b] such that f(a)<0 while f(b)>0. Then there exists a point c in [a,b] such that f(c)=0. The proof proceeds as follows.

  5. Delta method - Wikipedia

    en.wikipedia.org/wiki/Delta_method

    In statistics, the delta method is a method of deriving the asymptotic distribution of a random variable. It is applicable when the random variable being considered can be defined as a differentiable function of a random variable which is asymptotically Gaussian .

  6. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces.

  7. Nonstandard analysis - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_analysis

    H. Jerome Keisler, David Tall, and other educators maintain that the use of infinitesimals is more intuitive and more easily grasped by students than the "epsilon–delta" approach to analytic concepts. [10] This approach can sometimes provide easier proofs of results than the corresponding epsilon–delta formulation of the proof.

  8. Iterated limit - Wikipedia

    en.wikipedia.org/wiki/Iterated_limit

    In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...

  9. Sokhotski–Plemelj theorem - Wikipedia

    en.wikipedia.org/wiki/Sokhotski–Plemelj_theorem

    For the first term, ε ⁄ π (x 2 + ε 2) is a nascent delta function, and therefore approaches a Dirac delta function in the limit. Therefore, the first term equals ∓i π f(0). For the second term, the factor x 2 ⁄ (x 2 + ε 2) approaches 1 for |x| ≫ ε, approaches 0 for |x| ≪ ε, and is exactly symmetric about 0.