Search results
Results from the WOW.Com Content Network
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.
Then, the Heaviside step function Θ(x − x 0) is a Green's function of L at x 0. Let n = 2 and let the subset be the quarter-plane {(x, y) : x, y ≥ 0} and L be the Laplacian. Also, assume a Dirichlet boundary condition is imposed at x = 0 and a Neumann boundary condition is imposed at y = 0.
In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. [1] The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.
In mathematical analysis, Schwarz's theorem (or Clairaut's theorem on equality of mixed partials) [9] named after Alexis Clairaut and Hermann Schwarz, states that for a function : defined on a set , if is a point such that some neighborhood of is contained in and has continuous second partial derivatives on that neighborhood of , then for all i ...
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
That is, df is the unique 1-form such that for every smooth vector field X, df (X) = d X f , where d X f is the directional derivative of f in the direction of X. The exterior product of differential forms (denoted with the same symbol ∧ ) is defined as their pointwise exterior product .
Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...
Graph structure theorem (graph theory) Grauert–Riemenschneider vanishing theorem (algebraic geometry) Great orthogonality theorem (group theory) Green–Tao theorem (number theory) Green's theorem (vector calculus) Grinberg's theorem (graph theory) Gromov's compactness theorem (Riemannian geometry) Gromov's compactness theorem (symplectic ...