enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Substitution (logic) - Wikipedia

    en.wikipedia.org/wiki/Substitution_(logic)

    The identity substitution, which maps every variable to itself, is the neutral element of substitution composition. A substitution σ is called idempotent if σσ = σ, and hence tσσ = tσ for every term t. When x i ≠t i for all i, the substitution { x 1 ↦ t 1, …, x k ↦ t k} is idempotent if and only if none of the variables x i ...

  3. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    In statistics, imputation is the process of replacing missing data with substituted values. When substituting for a data point, it is known as "unit imputation"; when substituting for a component of a data point, it is known as "item imputation".

  4. Liskov substitution principle - Wikipedia

    en.wikipedia.org/wiki/Liskov_substitution_principle

    Liskov substitution principle imposes some standard requirements on signatures that have been adopted in newer object-oriented programming languages (usually at the level of classes rather than types; see nominal vs. structural subtyping for the distinction): Contravariance of method parameter types in the subtype.

  5. String interpolation - Wikipedia

    en.wikipedia.org/wiki/String_interpolation

    In computer programming, string interpolation (or variable interpolation, variable substitution, or variable expansion) is the process of evaluating a string literal containing one or more placeholders, yielding a result in which the placeholders are replaced with their corresponding values.

  6. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    Substitution of a single symbol x for a symbol y ≠ x changes u x v to u y v (x → y). In Levenshtein's original definition, each of these operations has unit cost (except that substitution of a character by itself has zero cost), so the Levenshtein distance is equal to the minimum number of operations required to transform a to b .

  7. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:

  8. Let expression - Wikipedia

    en.wikipedia.org/wiki/Let_expression

    The substitution operator is also used. The expression [:=] means substitute every occurrence of G in L by S and return the expression. The definition used is extended to cover the substitution of expressions, from the definition given on the Lambda calculus page. The matching of expressions should compare expressions for alpha equivalence ...

  9. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Substitution, written M[x := N], is the process of replacing all free occurrences of the variable x in the expression M with expression N. Substitution on terms of the lambda calculus is defined by recursion on the structure of terms, as follows (note: x and y are only variables while M and N are any lambda expression): x[x := N] = N