enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Retraction (topology) - Wikipedia

    en.wikipedia.org/wiki/Retraction_(topology)

    A space is an absolute neighborhood retract for the class , written ⁡ (), if is in and whenever is a closed subset of a space in , is a neighborhood retract of . Various classes C {\displaystyle {\mathcal {C}}} such as normal spaces have been considered in this definition, but the class M {\displaystyle {\mathcal {M}}} of metrizable spaces ...

  3. Karol Borsuk - Wikipedia

    en.wikipedia.org/wiki/Karol_Borsuk

    Karol Borsuk (8 May 1905 – 24 January 1982) was a Polish mathematician. His main area of interest was topology . He made significant contributions to shape theory , a term which he coined.

  4. Bing–Borsuk conjecture - Wikipedia

    en.wikipedia.org/wiki/Bing–Borsuk_conjecture

    In mathematics, the Bing–Borsuk conjecture states that every -dimensional homogeneous absolute neighborhood retract space is a topological manifold. The conjecture has been proved for dimensions 1 and 2, and it is known that the 3-dimensional version of the conjecture implies the Poincaré conjecture .

  5. Retract (group theory) - Wikipedia

    en.wikipedia.org/wiki/Retract_(group_theory)

    The following is known about retracts: A subgroup is a retract if and only if it has a normal complement. [4] The normal complement, specifically, is the kernel of the retraction. Every direct factor is a retract. [1] Conversely, any retract which is a normal subgroup is a direct factor. [5] Every retract has the congruence extension property.

  6. Borsuk's conjecture - Wikipedia

    en.wikipedia.org/wiki/Borsuk's_conjecture

    [7] For all n for fields of revolution — shown by Boris Dekster (1995). [8] The problem was finally solved in 1993 by Jeff Kahn and Gil Kalai, who showed that the general answer to Borsuk's question is no. [9] They claim that their construction shows that n + 1 pieces do not suffice for n = 1325 and for each n > 2014.

  7. Using the Borsuk–Ulam Theorem - Wikipedia

    en.wikipedia.org/wiki/Using_the_Borsuk–Ulam...

    Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry is a graduate-level mathematics textbook in topological combinatorics. It describes the use of results in topology , and in particular the Borsuk–Ulam theorem , to prove theorems in combinatorics and discrete geometry .

  8. Section (category theory) - Wikipedia

    en.wikipedia.org/wiki/Section_(category_theory)

    The concept of a retraction in category theory comes from the essentially similar notion of a retraction in topology: : where is a subspace of is a retraction in the topological sense, if it's a retraction of the inclusion map : in the category theory sense.

  9. Shape theory (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Shape_theory_(mathematics)

    Shape theory is a branch of topology that provides a more global view of the topological spaces than homotopy theory. The two coincide on compacta dominated homotopically by finite polyhedra . Shape theory associates with the Čech homology theory while homotopy theory associates with the singular homology theory.