enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Rather, the degree of the zero polynomial is either left explicitly undefined, or defined as negative (either −1 or −∞). [10] The zero polynomial is also unique in that it is the only polynomial in one indeterminate that has an infinite number of roots. The graph of the zero polynomial, f(x) = 0, is the x-axis.

  3. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A drawing of a graph with 6 vertices and 7 edges.. In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.

  4. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    A root of a polynomial is a zero of the corresponding polynomial function. [1] The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree , and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically ...

  5. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. [4]

  6. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Graph of a polynomial of degree 5, with 3 real zeros (roots) and 4 critical points. In mathematics, a quintic function is a function of the form = + + + + +,where a ...

  7. Matching polynomial - Wikipedia

    en.wikipedia.org/wiki/Matching_polynomial

    In the mathematical fields of graph theory and combinatorics, a matching polynomial (sometimes called an acyclic polynomial) is a generating function of the numbers of matchings of various sizes in a graph. It is one of several graph polynomials studied in algebraic graph theory.

  8. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. [1]

  9. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0. A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer.