Search results
Results from the WOW.Com Content Network
In linguistics, lexical similarity is a measure of the degree to which the word sets of two given languages are similar. A lexical similarity of 1 (or 100%) would mean a total overlap between vocabularies, whereas 0 means there are no common words. There are different ways to define the lexical similarity and the results vary accordingly.
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. ROUGE metrics range between 0 and 1, with higher scores indicating higher similarity between the automatically produced summary and the reference.
The Automated Similarity Judgment Program (ASJP) is a collaborative project applying computational approaches to comparative linguistics using a database of word lists. The database is open access and consists of 40-item basic-vocabulary lists for well over half of the world's languages. [ 1 ]
The check results are presented as a similarity report, where each of the similarities that have been found has a link to the source. These reports can be downloaded as PDF documents. Unicheck can be used as a stand-alone online tool, or integrated into an LMS (Learning Management System) via plugin, LTI, API or LTI+API types of integrations.
Similarity scores are among the many original sabermetric concepts first introduced by Bill James. James initially created the concept as a way to effectively compare non- Hall of Fame players to players in the Hall, to see who was either on track to make the HOF, or to determine if any eligible players had been snubbed by the selection committee.
A number of computer-assisted translation software and websites exists for various platforms and access types. According to a 2006 survey undertaken by Imperial College of 874 translation professionals from 54 countries, primary tool usage was reported as follows: Trados (35%), Wordfast (17%), Déjà Vu (16%), SDL Trados 2006 (15%), SDLX (4%), STAR Transit [fr; sv] (3%), OmegaT (3%), others (7%).
The higher the Jaro–Winkler distance for two strings is, the less similar the strings are. The score is normalized such that 0 means an exact match and 1 means there is no similarity. The original paper actually defined the metric in terms of similarity, so the distance is defined as the inversion of that value (distance = 1 − similarity).