enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function ⁠ 1 / Γ(z) ⁠ is an entire function.

  3. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the real axis. The only one on the positive real axis is the unique minimum of the real-valued gamma function on R + at x 0 = 1.461 632 144 968 362 341 26.... All others occur single between the poles on the negative axis:

  4. Beta function - Wikipedia

    en.wikipedia.org/wiki/Beta_function

    The relationship between the two functions is like that between the gamma function and its generalization the incomplete gamma function. For positive integer a and b, the incomplete beta function will be a polynomial of degree a + b - 1 with rational coefficients.

  5. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    One property of the gamma function, distinguishing it from other continuous interpolations of the factorials, is given by the Bohr–Mollerup theorem, which states that the gamma function (offset by one) is the only log-convex function on the positive real numbers that interpolates the factorials and obeys the same functional equation.

  6. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    A similar result holds for the rising factorial and the backward difference operator. The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and ...

  7. q-gamma function - Wikipedia

    en.wikipedia.org/wiki/Q-gamma_function

    Thus the -gamma function can be considered as an extension of the -factorial function to the real numbers. The relation to the ordinary gamma function is made explicit in the limit = (). There is a simple proof of this limit by Gosper.

  8. Reciprocal gamma function - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_gamma_function

    The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function. Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.

  9. Polygamma function - Wikipedia

    en.wikipedia.org/wiki/Polygamma_function

    Like the log-gamma function, the polygamma functions can be generalized from the domain uniquely to positive real numbers only due to their recurrence relation and one given function-value, say ψ (m) (1), except in the case m = 0 where the additional condition of strict monotonicity on + is still needed.