Search results
Results from the WOW.Com Content Network
The composition of Jupiter's atmosphere is similar to that of the planet as a whole. [1] Jupiter's atmosphere is the most comprehensively understood of those of all the giant planets because it was observed directly by the Galileo atmospheric probe when it entered the Jovian atmosphere on December 7, 1995. [28]
Jupiter was the first of the Sun's planets to form, and its inward migration during the primordial phase of the Solar System affected much of the formation history of the other planets. Jupiter's atmosphere consists of 76% hydrogen and 24% helium by mass, with a denser interior.
Internal heat is the heat source from the interior of celestial objects, such as stars, brown dwarfs, planets, moons, dwarf planets, and (in the early history of the Solar System) even asteroids such as Vesta, resulting from contraction caused by gravity (the Kelvin–Helmholtz mechanism), nuclear fusion, tidal heating, core solidification (heat of fusion released as molten core material ...
Jupiter on Saturday will shine at its brightest for the year, as Earth’s orbit swings our planet between Jupiter and the sun. Weather permitting, the gas giant will not only be brighter than ...
This is due to the colder upper layer of the troposphere acting as a cold trap currently preventing Earth from permanently losing its water to space at present, even with manmade global warming (this is also the reason why climate change is only going to make extreme weather events worse in the near term, as a warmer atmosphere can hold more ...
The highly visible Great Red Spot on Jupiter could be a heat source, finds a recently published study. NASA suspects Jupiter's Great Red Spot is 'a massive heat source' Skip to main content
The cooling causes the internal pressure to drop, and the star or planet shrinks as a result. This compression, in turn, heats the core of the star/planet. This mechanism is evident on Jupiter and Saturn and on brown dwarfs whose central temperatures are not high enough to undergo hydrogen fusion. It is estimated that Jupiter radiates more ...
Tidal heating (also known as tidal working or tidal flexing) occurs through the tidal friction processes: orbital and rotational energy is dissipated as heat in either (or both) the surface ocean or interior of a planet or satellite. When an object is in an elliptical orbit, the tidal forces acting on it are stronger near periapsis than near ...