Search results
Results from the WOW.Com Content Network
The rule to calculate significant figures for multiplication and division are not the same as the rule for addition and subtraction. For multiplication and division, only the total number of significant figures in each of the factors in the calculation matters; the digit position of the last significant figure in each factor is irrelevant.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
A significant figure is a digit in a number that adds to its precision. This includes all nonzero numbers, zeroes between significant digits, and zeroes indicated to be significant. Leading and trailing zeroes are not significant digits, because they exist only to show the scale of the number. Unfortunately, this leads to ambiguity.
In mathematics, trailing zeros are a sequence of 0 in the decimal representation (or more generally, in any positional representation) of a number, after which no other digits follow. Trailing zeros to the right of a decimal point , as in 12.340, don't affect the value of a number and may be omitted if all that is of interest is its numerical ...
When using approximation equations or algorithms, especially when using finitely many digits to represent real numbers (which in theory have infinitely many digits), one of the goals of numerical analysis is to estimate computation errors. [5] Computation errors, also called numerical errors, include both truncation errors and roundoff errors.
The decimal expansion of an irrational number never repeats (meaning the decimal expansion does not repeat the same number or sequence of numbers) or terminates (this means there is not a finite number of nonzero digits), unlike any rational number.
A round number is mathematically defined as an integer which is the product of a considerable number of comparatively small factors [12] [13] as compared to its neighboring numbers, such as 24 = 2 × 2 × 2 × 3 (4 factors, as opposed to 3 factors for 27; 2 factors for 21, 22, 25, and 26; and 1 factor for 23).
In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]