Search results
Results from the WOW.Com Content Network
The Pianet N (second variant) has a case side-profile with a taper towards the front. It has tapered rectangular cross-section legs forming an inverted 'V' that mount to the ends of the case and are secured by a large threaded knob. The legs are satin black. The legs are braced by a black cross bar towards the base of the rear legs.
A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...
Poloidal direction (red arrow) and toroidal direction (blue arrow) A torus of revolution in 3-space can be parametrized as: [2] (,) = (+ ) (,) = (+ ) (,) = using angular coordinates θ, φ ∈ [0, 2π), representing rotation around the tube and rotation around the torus's axis of revolution, respectively, where the major radius R is the distance from the center of the tube to ...
Joseph Boussinesq derived the velocity profile and volume flow rate in 1868 for rectangular channel and tubes of equilateral triangular cross-section and for elliptical cross-section. [17] Joseph Proudman derived the same for isosceles triangles in 1914. [ 18 ]
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
The condition of balance ensures that the volume of the cone plus the volume of the sphere is equal to the volume of the cylinder. The volume of the cylinder is the cross section area, times the height, which is 2, or . Archimedes could also find the volume of the cone using the mechanical method, since, in modern terms, the integral involved ...
For example, for a rectangular cross section, with constant channel width B and channel bed elevation z b, the cross sectional area is: A = B (ζ − z b) = B h. The instantaneous water depth is h(x,t) = ζ(x,t) − z b (x), with z b (x) the bed level (i.e. elevation of the lowest point in the bed above datum, see the cross-section figure).
If every plane parallel to these two planes intersects both regions in cross-sections of equal area, then the two regions have equal volumes. Today Cavalieri's principle is seen as an early step towards integral calculus , and while it is used in some forms, such as its generalization in Fubini's theorem and layer cake representation , results ...