Search results
Results from the WOW.Com Content Network
For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.
Q factor: Q = physics, engineering ... phase change, thermodynamics (ratio of sensible heat to latent heat) Strain
The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.
q = Heat per unit mass added into the system. Strictly speaking, enthalpy is a function of both temperature and density. However, invoking the common assumption of a calorically perfect gas, enthalpy can be converted directly into temperature as given above, which enables one to define a stagnation temperature in terms of the more fundamental property, stagnation enthalpy.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.
The history of thermodynamics is fundamentally interwoven with the history of physics and the history of chemistry, and ultimately dates back to theories of heat in antiquity. The laws of thermodynamics are the result of progress made in this field over the nineteenth and early twentieth centuries.
Thermodynamic diagrams usually show a net of five different lines: isobars = lines of constant pressure; isotherms = lines of constant temperature; dry adiabats = lines of constant potential temperature representing the temperature of a rising parcel of dry air