enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point.

  3. Type conversion - Wikipedia

    en.wikipedia.org/wiki/Type_conversion

    This odd behavior is caused by an implicit conversion of i_value to float when it is compared with f_value. The conversion causes loss of precision, which makes the values equal before the comparison. Important takeaways: float to int causes truncation, i.e., removal of the fractional part. double to float causes rounding of digit.

  4. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    Subnormal numbers ensure that for finite floating-point numbers x and y, x − y = 0 if and only if x = y, as expected, but which did not hold under earlier floating-point representations. [ 43 ] On the design rationale of the x87 80-bit format , Kahan notes: "This Extended format is designed to be used, with negligible loss of speed, for all ...

  5. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    ARM processors support (via a floating-point control register bit) an "alternative half-precision" format, which does away with the special case for an exponent value of 31 (11111 2). [10] It is almost identical to the IEEE format, but there is no encoding for infinity or NaNs; instead, an exponent of 31 encodes normalized numbers in the range ...

  6. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    Like the binary floating-point formats, the number is divided into a sign, an exponent, and a significand. Unlike binary floating-point, numbers are not necessarily normalized; values with few significant digits have multiple possible representations: 1×10 2 =0.1×10 3 =0.01×10 4, etc. When the significand is zero, the exponent can be any ...

  7. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base .) Analogous to scientific notation , where numbers are written to have a single non-zero digit to the left of the decimal point, we rewrite this number so it has a single 1 bit to the left of the "binary point".

  8. Floating point operations per second - Wikipedia

    en.wikipedia.org/wiki/Floating_point_operations...

    Floating-point operations are typically used in fields such as scientific computational research, as well as in machine learning. However, before the late 1980s floating-point hardware (it's possible to implement FP arithmetic in software over any integer hardware) was typically an optional feature, and computers that had it were said to be ...

  9. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  1. Related searches double vs float formula in matlab pdf converter 2 0 manual troubleshooting

    subnormal floating point formuladouble precision floating point format