Search results
Results from the WOW.Com Content Network
The other roots of the equation are obtained either by changing of cube root or, equivalently, by multiplying the cube root by a primitive cube root of unity, that is . This formula for the roots is always correct except when p = q = 0 , with the proviso that if p = 0 , the square root is chosen so that C ≠ 0 .
In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation F ( x , y , z ) = 0 {\displaystyle F(x,y,z)=0} applied to homogeneous coordinates ( x : y : z ) {\displaystyle (x:y:z)} for the projective plane ; or the inhomogeneous version for the affine space determined by setting z = 1 in such an ...
Therefore an intrinsic equation defines the shape of the curve without specifying its position relative to an arbitrarily defined coordinate system. The intrinsic quantities used most often are arc length s {\displaystyle s} , tangential angle θ {\displaystyle \theta } , curvature κ {\displaystyle \kappa } or radius of curvature , and, for 3 ...
Duck curve; Engel curve; Hubbert curve; Indifference curve; J curve; Kuznets curve; Laffer curve; Lorenz curve; Phillips curve; Supply curve. Aggregate supply curve; Backward bending supply curve of labor
The hypothesis implies that f has no roots on , hence by the argument principle, the number N f (K) of zeros of f in K is ′ () = = (), i.e., the winding number of the closed curve around the origin; similarly for g.
A root is a simple root if = or a multiple root if . Simple roots are Lipschitz continuous with respect to coefficients but multiple roots are not. In other words, simple roots have bounded sensitivities but multiple roots are infinitely sensitive if the coefficients are perturbed arbitrarily.
Integral curves are known by various other names, depending on the nature and interpretation of the differential equation or vector field. In physics, integral curves for an electric field or magnetic field are known as field lines, and integral curves for the velocity field of a fluid are known as streamlines.
The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator n, a Puiseux series becomes a Laurent series in an n th root of the indeterminate. For example, the example above is a Laurent series in /.