enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lower limit topology - Wikipedia

    en.wikipedia.org/wiki/Lower_limit_topology

    The Sorgenfrey line can thus be used to study right-sided limits: if : is a function, then the ordinary right-sided limit of at (when the codomain carries the standard topology) is the same as the usual limit of at when the domain is equipped with the lower limit topology and the codomain carries the standard topology.

  3. Locally compact space - Wikipedia

    en.wikipedia.org/wiki/Locally_compact_space

    The cofinite topology on an infinite set is locally compact in senses (1), (2), and (3), and compact as well, but it is not Hausdorff or regular so it is not locally compact in senses (4) or (5). The indiscrete topology on a set with at least two elements is locally compact in senses (1), (2), (3), and (4), and compact as well, but it is not ...

  4. σ-compact space - Wikipedia

    en.wikipedia.org/wiki/Σ-compact_space

    Every compact space is σ-compact, and every σ-compact space is Lindelöf (i.e. every open cover has a countable subcover). [4] The reverse implications do not hold, for example, standard Euclidean space (R n) is σ-compact but not compact, [5] and the lower limit topology on the real line is Lindelöf but not σ-compact. [6]

  5. Compact space - Wikipedia

    en.wikipedia.org/wiki/Compact_space

    For an ordered space (X, <) (i.e. a totally ordered set equipped with the order topology), the following are equivalent: (X, <) is compact. Every subset of X has a supremum (i.e. a least upper bound) in X. Every subset of X has an infimum (i.e. a greatest lower bound) in X. Every nonempty closed subset of X has a maximum and a minimum element.

  6. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  7. List of general topology topics - Wikipedia

    en.wikipedia.org/wiki/List_of_general_topology...

    Continuum (topology) Extended real number line; Long line (topology) Sierpinski space; Cantor set, Cantor space, Cantor cube; Space-filling curve; Topologist's sine curve; Uniform norm; Weak topology; Strong topology; Hilbert cube; Lower limit topology; Sorgenfrey plane; Real tree; Compact-open topology; Zariski topology; Kuratowski closure ...

  8. Comparison of topologies - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_topologies

    The finest topology on X is the discrete topology; this topology makes all subsets open. The coarsest topology on X is the trivial topology; this topology only admits the empty set and the whole space as open sets. In function spaces and spaces of measures there are often a number of possible topologies.

  9. Glossary of general topology - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_general_topology

    Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.