Search results
Results from the WOW.Com Content Network
In other words, for an object floating on a liquid surface (like a boat) or floating submerged in a fluid (like a submarine in water or dirigible in air) the weight of the displaced liquid equals the weight of the object. Thus, only in the special case of floating does the buoyant force acting on an object equal the objects weight.
Vertical pressure variation is the variation in pressure as a function of elevation.Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects.
One is an inward force on the surface molecules causing the liquid to contract. [2] [3] Second is a tangential force parallel to the surface of the liquid. [3] This tangential force is generally referred to as the surface tension. The net effect is the liquid behaves as if its surface were covered with a stretched elastic membrane.
The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [ 1 ] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [ 2 ]
"The majority of the adult body is water, up to 60% of your weight," says Schnoll-Sussman, adding that the average person's weight can fluctuate one to five pounds per day due to water.
The surface of a fluid is curved because exposed molecules on the surface have fewer neighboring interactions, resulting in a net force that contracts the surface. There exists a pressure difference either side of this curvature, and when this balances out the pressure due to gravity, one can rearrange to find the capillary length.
For premium support please call: 800-290-4726 more ways to reach us
where r i is the radius of the inner ring of the liquid film pulled, and r a is the radius of the outer ring of the liquid film. [2] w ring is the weight of the ring minus the buoyant force due to the part of the ring below the liquid surface. [3] When the ring's thickness is much smaller than its diameter, this equation can be simplified to