Search results
Results from the WOW.Com Content Network
In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne (−C≡CH) is added to a carbonyl group (C=O) to form an α-alkynyl alcohol (R 2 C(−OH)−C≡C−R).
English: Diagram showing the chemical reaction involving Sonogashira reaction of a phenylalanine derivative with an alkyne. Modified from File:Alkynylation.gif to correct chemical errors. Date
The reaction medium must be basic to neutralize the hydrogen halide produced as the byproduct of this coupling reaction, so alkylamine compounds such as triethylamine and diethylamine are sometimes used as solvents, but also DMF or ether can be used as solvent. Other bases such as potassium carbonate or cesium carbonate are occasionally used.
A 3D model of ethyne (), the simplest alkyneIn organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. [1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula C n H 2n−2.
The Seyferth–Gilbert homologation is a chemical reaction of an aryl ketone 1 (or aldehyde) with dimethyl (diazomethyl)phosphonate 2 and potassium tert-butoxide to give substituted alkynes 3. [ 1 ] [ 2 ] Dimethyl (diazomethyl)phosphonate 2 is often called the Seyferth–Gilbert reagent .
The Corey–Fuchs reaction, also known as the Ramirez–Corey–Fuchs reaction, is a series of chemical reactions designed to transform an aldehyde into an alkyne. [1] [2] [3] The formation of the 1,1-dibromoolefins via phosphine-dibromomethylenes was originally discovered by Desai, McKelvie and Ramirez. [4]
The Favorskii reaction is an organic chemistry reaction between an alkyne and a carbonyl group, under basic conditions. The reaction was discovered in the early 1900s by the Russian chemist Alexei Yevgrafovich Favorskii. [1] Favorskii reaction and the possible subsequent rearrangement
[1] [2] The reaction product is a 1,3-diyne or di-alkyne. The reaction mechanism involves deprotonation by base of the terminal alkyne proton followed by formation of a copper(I) acetylide . A cycle of oxidative addition and reductive elimination on the copper centre then creates a new carbon-carbon bond.