Search results
Results from the WOW.Com Content Network
The sizeof operator on such a struct gives the size of the structure as if the flexible array member were empty. This may include padding added to accommodate the flexible member; the compiler is also free to re-use such padding as part of the array itself. [2]
In Java associative arrays are implemented as "maps", which are part of the Java collections framework. Since J2SE 5.0 and the introduction of generics into Java, collections can have a type specified; for example, an associative array that maps strings to strings might be specified as follows:
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
By contrast, in open addressing, if a hash collision is found, the table seeks an empty spot in an array to store the value in a deterministic manner, usually by looking at the next immediate position in the array. Open addressing has a lower cache miss ratio than separate chaining when the table is mostly empty. However, as the table becomes ...
Byte, octet, minimum size of char in C99( see limits.h CHAR_BIT) −128 to +127 0 to 255 2 bytes 16 bits x86 word, minimum size of short and int in C −32,768 to +32,767 0 to 65,535 4 bytes 32 bits x86 double word, minimum size of long in C, actual size of int for most modern C compilers, [8] pointer for IA-32-compatible processors
Elements can be removed from the end of a dynamic array in constant time, as no resizing is required. The number of elements used by the dynamic array contents is its logical size or size, while the size of the underlying array is called the dynamic array's capacity or physical size, which is the maximum possible size without relocating data. [2]
A bit array (also known as bitmask, [1] bit map, bit set, bit string, or bit vector) is an array data structure that compactly stores bits. It can be used to implement a simple set data structure . A bit array is effective at exploiting bit-level parallelism in hardware to perform operations quickly.
One same container type can have more than one associated iterator type; for instance the std::vector<T> container type allows traversal either using (raw) pointers to its elements (of type *<T>), or values of a special type std::vector<T>::iterator, and yet another type is provided for "reverse iterators", whose operations are defined in such ...