Search results
Results from the WOW.Com Content Network
The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types of geometric intersection include: Line–plane intersection; Line–sphere intersection; Intersection of a polyhedron with a line
For a plane, the two angles are called its strike (angle) and its dip (angle). A strike line is the intersection of a horizontal plane with the observed planar feature (and therefore a horizontal line), and the strike angle is the bearing of this line (that is, relative to geographic north or from magnetic north). The dip is the angle between a ...
This can be thought of as placing a sphere tangent to the plane (just like a ball on the floor), removing the top point, and projecting the sphere onto the plane from this point. This is one of the projections that may be used in making a flat map of part of the Earth's surface. The resulting geometry has constant positive curvature.
In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.
The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms, in order to calculate points of ...
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
If a plane intersects a solid (a 3-dimensional object), then the region common to the plane and the solid is called a cross-section of the solid. [1] A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid.
An orbital plane can also be seen in relative to conic sections, in which the orbital path is defined as the intersection between a plane and a cone. Parabolic (1) and hyperbolic (3) orbits are escape orbits, whereas elliptical and circular orbits (2) are captive. The orbital plane of a revolving body is the geometric plane in which its orbit lies.