Search results
Results from the WOW.Com Content Network
The Journal of Time Series Analysis is a bimonthly peer-reviewed academic journal covering mathematical statistics as it relates to the analysis of time series data. It was established in 1980 and is published by John Wiley & Sons. The editor-in-chief is Robert Taylor (University of Essex).
Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...
In time series analysis, the Box–Jenkins method, [1] named after the statisticians George Box and Gwilym Jenkins, applies autoregressive moving average (ARMA) or autoregressive integrated moving average (ARIMA) models to find the best fit of a time-series model to past values of a time series.
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.
This page was last edited on 3 December 2016, at 12:01 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
TSP stands for "Time Series Processor", although it is also commonly used with cross section and panel data. The program was initially developed by Robert Hall during his graduate studies at Massachusetts Institute of Technology in the 1960s. [ 1 ]
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
This is an important technique for all types of time series analysis, especially for seasonal adjustment. [2] It seeks to construct, from an observed time series, a number of component series (that could be used to reconstruct the original by additions or multiplications) where each of these has a certain characteristic or type of behavior.