Search results
Results from the WOW.Com Content Network
Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.
When a charged particle in a gas or liquid is acted upon by a uniform electric field, it will be accelerated until it reaches a constant drift velocity according to the formula =, where v d {\displaystyle v_{\text{d}}} is the drift velocity ( SI units : m/s),
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in quantum mechanics; List of equations in wave theory; List of photonics equations; List of relativistic equations; Relativistic wave equations
Alternatively the final velocity of a particle, v 2 (v A2 or v B2) is expressed by: = (+) Where: e is the coefficient of restitution. v CoM is the velocity of the center of mass of the system of two particles: = + +
Consider a free particle of mass with equation of motion described by = + (), where = / is the particle velocity, is the particle mobility, and () = is a rapidly fluctuating force whose time-average vanishes over a characteristic timescale of particle collisions, i.e. () ¯ =.
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
For dilute gases, kinetic molecular theory relates the diffusion coefficient D to the particle density n = N/V, the molecular mass m, the collision cross section, and the absolute temperature T by = where the second factor is the mean free path and the square root (with the Boltzmann constant k) is the mean velocity of the particles.