enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic approximation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_approximation

    Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but ...

  3. Simultaneous perturbation stochastic approximation - Wikipedia

    en.wikipedia.org/wiki/Simultaneous_perturbation...

    Simultaneous perturbation stochastic approximation (SPSA) is an algorithmic method for optimizing systems with multiple unknown parameters. It is a type of stochastic approximation algorithm. As an optimization method, it is appropriately suited to large-scale population models, adaptive modeling, simulation optimization , and atmospheric ...

  4. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The same generalization cannot be done for any arbitrary deterministic method. [1] Consider the stochastic differential equation (see Itô calculus)

  5. Simulation-based optimization - Wikipedia

    en.wikipedia.org/wiki/Simulation-based_optimization

    Once a system is mathematically modeled, computer-based simulations provide information about its behavior. Parametric simulation methods can be used to improve the performance of a system. In this method, the input of each variable is varied with other parameters remaining constant and the effect on the design objective is observed.

  6. Markov chain approximation method - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_approximation...

    In numerical methods for stochastic differential equations, the Markov chain approximation method (MCAM) belongs to the several numerical (schemes) approaches used in stochastic control theory. Regrettably the simple adaptation of the deterministic schemes for matching up to stochastic models such as the Runge–Kutta method does not work at all.

  7. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.

  8. Stochastic optimization - Wikipedia

    en.wikipedia.org/wiki/Stochastic_optimization

    Stochastic optimization (SO) are optimization methods that generate and use random variables. For stochastic optimization problems, the objective functions or constraints are random. Stochastic optimization also include methods with random iterates .

  9. Milstein method - Wikipedia

    en.wikipedia.org/wiki/Milstein_method

    Consider the autonomous Itō stochastic differential equation: = + with initial condition =, where denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [,]. Then the Milstein approximation to the true solution X {\displaystyle X} is the Markov chain Y {\displaystyle Y} defined as follows:

  1. Related searches stochastic approximation algorithm matlab tutorial point system analysis

    stochastic approximation methodsstochastic approximation formula
    stochastic approximation definition