Search results
Results from the WOW.Com Content Network
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics , a sequence of random variables is homoscedastic ( / ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k / ) if all its random variables have the same finite variance ; this is also known as homogeneity of variance.
Heteroscedasticity often occurs when there is a large difference among the sizes of the observations. A classic example of heteroscedasticity is that of income versus expenditure on meals. A wealthy person may eat inexpensive food sometimes and expensive food at other times. A poor person will almost always eat inexpensive food.
This test, and an estimator for heteroscedasticity-consistent standard errors, were proposed by Halbert White in 1980. [1] These methods have become widely used, making this paper one of the most cited articles in economics.
In statistics, Bartlett's test, named after Maurice Stevenson Bartlett, [1] is used to test homoscedasticity, that is, if multiple samples are from populations with equal variances. [2] Some statistical tests, such as the analysis of variance , assume that variances are equal across groups or samples, which can be checked with Bartlett's test.
Generally, when testing for heteroskedasticity in econometric models, the best test is the White test. However, when dealing with time series data, this means to test for ARCH and GARCH errors. Exponentially weighted moving average (EWMA) is an alternative model in a separate class of exponential smoothing models. As an alternative to GARCH ...
The purpose of the comparison is to determine which candidate model is most appropriate for statistical inference. Common criteria for comparing models include the following: R 2, Bayes factor, and the likelihood-ratio test together with its generalization relative likelihood. For more on this topic, see statistical model selection.
In statistics, Levene's test is an inferential statistic used to assess the equality of variances for a variable calculated for two or more groups. [1] This test is used because some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption.
Herbert Glejser, in his 1969 paper outlining the Glejser test, provides a small sampling experiment to test the power and sensitivity of the Goldfeld–Quandt test. His results show limited success for the Goldfeld–Quandt test except under cases of "pure heteroskedasticity"—where variance can be described as a function of only the underlying explanatory variable.