Search results
Results from the WOW.Com Content Network
The surface emits a radiative flux density F according to the Stefan–Boltzmann law: = where σ is the Stefan–Boltzmann constant. A key to understanding the greenhouse effect is Kirchhoff's law of thermal radiation. At any given wavelength the absorptivity of the atmosphere will be equal to the emissivity. Radiation from the surface could be ...
Nuclear spectroscopy are methods that use the properties of specific nuclei to probe the local structure in matter, mainly condensed matter, molecules in liquids or frozen liquids and bio-molecules. Quantum logic spectroscopy is a general technique used in ion traps that enables precision spectroscopy of ions with internal structures that ...
This yields Kirchhoff's law: α λ = ε λ {\displaystyle \alpha _{\lambda }=\varepsilon _{\lambda }} By a similar, but more complicated argument, it can be shown that, since black-body radiation is equal in every direction (isotropic), the emissivity and the absorptivity, if they happen to be dependent on direction, must again be equal for any ...
Laser spectroscopic techniques have been used for many different applications. One example is using laser spectroscopy to detect compounds in materials. One specific method is called Laser-induced Fluorescence Spectroscopy, and uses spectroscopic methods to be able to detect what materials are in a solid, liquid, or gas, in situ. This allows ...
Gustav Robert Kirchhoff (German: [ˈgʊs.taːf ˈkɪʁç.hɔf]; 12 March 1824 – 17 October 1887) was a German chemist, mathematician and physicist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.
In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid. = + + +, = + +, = (~ +) = ^, = ^ where and are the angular and linear velocity vectors at the point , respectively; ~ is the moment of inertia tensor, is the body's mass; ^ is a unit normal vector to the surface of the body at the point ; is a pressure at this point ...
Kirchhoff's laws are named after Gustav Kirchhoff and cover thermodynamics, thermochemistry, electrical circuits and spectroscopy (see Kirchhoff's laws (disambiguation)). Kleiber's law: for the vast majority of animals, an animal's metabolic rate scales to the 3⁄4 power of the animal's mass. Named after Max Kleiber.
Kirchhoff's theorem can be used to calculate the number of spanning trees for a given graph. The sparsest cut of a graph can be approximated through the Fiedler vector — the eigenvector corresponding to the second smallest eigenvalue of the graph Laplacian — as established by Cheeger's inequality.