Search results
Results from the WOW.Com Content Network
In rotordynamical systems, the eigenfrequencies often depend on the rotation rates due to the induced gyroscopic effects or variable hydrodynamic conditions in fluid bearings. It might represent the following cases: Campbell Diagram of a steam turbine. Analysis shows that there are well-damped critical speed at lower speed range.
Since the gyroscope allows the calculation of orientation and rotation, designers have incorporated them into modern technology. The integration of the gyroscope has allowed for more accurate recognition of movement within a 3D space than the previous lone accelerometer within a number of smartphones. Gyroscopes in consumer electronics are ...
Gyroscopic effect on front wheel of a bike. Applying a torque (in green) about the lean axis results in a reaction torque (in blue) about the steer axis. The role of the gyroscopic effect in most bike designs is to help steer the front wheel into the direction of a lean.
Vibrating structure MEMS gyroscope. Inexpensive vibrating structure microelectromechanical systems (MEMS) gyroscopes have become widely available. These are packaged similarly to other integrated circuits and may provide either analogue or digital outputs. In many cases, a single part includes gyroscopic sensors for multiple axes.
Hemispherical Resonator Gyroscope (HRG) The hemispherical resonator gyroscope (HRG), also called wine-glass gyroscope or mushroom gyro, is a compact, low-noise, high-performance angular rate or rotation sensor. An HRG is made using a thin solid-state hemispherical shell, anchored by a thick stem.
Ring laser gyroscope. A ring laser gyroscope (RLG) consists of a ring laser having two independent counter-propagating resonant modes over the same path; the difference in phase is used to detect rotation. It operates on the principle of the Sagnac effect which shifts the nulls of the internal standing wave pattern in response to angular rotation.
G is the skew-symmetric gyroscopic matrix: K is the symmetric bearing or seal stiffness matrix; N is the gyroscopic matrix of deflection for inclusion of e.g., centrifugal elements; q(t) is the generalized coordinates of the rotor in inertial coordinates; f(t) is a forcing function, usually including the unbalance.
The ship gyroscopic stabilizer typically operates by constraining the gyroscope's roll axis and allowing it to "precess" either in the pitch or the yaw axes. Allowing it to precess as the ship rolls causes its spinning rotor to generate a counteracting roll stabilizing moment to that generated by the waves on the ship's hull.